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and on the White River uplift; perhaps the uplift had been
eroded to about the same elevation as the Piceance basin
prior to deposition of the basalts at 24 Ma. This surface
clearly truncates upper Eocene rocks toward the southwest-
ern margin of the Piceance basin and may have begun to
form in the late Eocene during the final stages of the Lara-
mide orogeny (Johnson and Nuccio, 1986). Johnson and
Nuccio suggested that this surface covered much of
Piceance basin prior to regional uplift and downcutting
about 10 Ma, and they used this surface to estimate the
thickness of overburden removed during the last 10 million
years. The thickness of section removed beneath this sur-
face is unknown but probably increases toward the margins
of the Laramide-age Piceance basin. Johnson and Nuccio
reconstructed burial curves only near the structural trough
of the Piceance basin, where the thickness of section
removed was probably minimal.

Significant deposition and erosion may have occurred in
the Uinta and Piceance basins between the development of
the late Eocene—early Oligocene erosion surfaces and the
onset of regional uplift and downcutting about 10 Ma. The
southern part of the Piceance basin was buried under an
unknown thickness of volcanic debris following an Oli-
gocene igneous event. Shallow intrusions of intermediate _
composition were emplaced in the southern part of the
Piceance basin from about 34 to 29 Ma. Exposed plutons
today are as high as 14,000 ft. Venting of some of these
intrusions produced extensive layers of ash and breccia over
the southern Piceance basin, but only remnants of this ash
layer remain. Gravels and variegated claystones as thick as
900 ft are locally preserved beneath basalt flows on Grand
Mesa in the south-central part of the Piceance basin (Yeend,
1969). Clasts in this unit probably were derived from
Oligocene plutons to the south.

An east-west-trending valley was cut across the north-
ern part of the study area prior to 25 Ma and partly filled by
sediments of the upper Oligocene and Miocene Browns
Park Formation (plate 1) (Sears, 1924; Bradley, 1936,
Hansen, 1965; Izett, 1975). Tributaries from this valley
could have extended southward into the Uinta and Piceance
basins, removing a significant thickness of strata. The
Piceance Creek drainage system in the north-central part of
the Piceance basin (plate 1) flows north into the present-
day White River and follows geologic structure to a
remarkable degree; thus, the system may have developed
prior to the end of structural movement near the end of the
Laramide orogeny (Whitney and Andrews, 1983; Whitney
and others, 1984). The ancestral Piceance Creek could have
drained north into this east-west-trending valley, and a sig-
nificant amount of erosion may have occurred in the ances-
tral Piceance Creck drainage system during this period.
Another broad valley, possibly cut by the ancestral Gunni-
son River, is preserved beneath the West Elk Breccia, an
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Oligocene volcanic breccia in the southernmost part of the
Piceance basin (plate 1) (Hunt, 1969). This valley presently
ranges in elevation from about 10,000 to less than 8,200 ft.

A similar late Eocene to Oligocene erosion surface, the
Gilbert Peak erosion surface, is preserved along the flanks
of the Uinta Mountains. This surface has been used to
reconstruct post-Laramide collapse of the eastern part of
the Uinta Mountains (Hansen, 1984). Laramide uplifts
such as the Uinta Mountains are held up by crustal
strength rather than buoyancy and are susceptible to
collapse (Sales, 1983). Post-Laramide collapse occurred
along roughly the same fault zones that brought the
mountains up during the Laramide orogeny (Hansen,
1984). Unfortunately, the Gilbert Peak erosion surface is
not preserved in the Uinta basin, and it is unclear how the
collapse of the eastern part of the Uinta Mountains
affected the adjacent basin.

This lack of a definable base level prior to the onset of
downcutting about 10 Ma has resulted in widely varying
estimates of the thickness of overburden removed during
the last 10 million years from the Uinta basin. The present
land surface in the Uinta basin is roughly bowl shaped,
rising gently from about 5,000 ft in the center of the basin
to more than 10,000 ft along both the north and south rims.
In the southern half of the basin, the present-day topogra-
phy and secondary streams generally follow structural dip
and flow to the north, northeast, and northwest; however,
this relationship probably formed since downcutting began
about 10 Ma. The course of the Green River, which
predates the onset of downcutting at 10 Ma, is not influ-
enced by present-day topography. The Green River flows
southwest across the eastern end of the Uinta Mountains,
veers south across the Uinta basin, and then exits through
the high south rim of the basin (plate 1). The remarkable
course of the Green River has fascinated geologists since
the days of John Wesley Powell; theories of the origin of
the Green River have been described by Hansen (1969).

Tissot and others (1978) estimated that 5,840 ft of
overburden was eroded from the site of the Shell 1-23-B4
Brotherson well in the Altamont-Bluebell field near the
trough of the Uinta basin (plate 1) but did not explain how
they arrived at their estimate. This amount of erosion
would put the basin surface prior to downcutting at a
present-day elevation of about 12,100 ft. Narr and Currie
(1982) analyzed fluid inclusions from fractures in the
Altamont-Bluebell area and produced widely varying esti-
mates of overburden removed, from 1,112 to 9,482 ft.
Pitman and others (1982) used projected thicknesses in the
Pariette Bench field in the eastern Uinta basin to estimate
that no more than 3,300 ft of overburden has been
removed; this would put the basin surface prior to down-
cutting at the present-day elevation of about 8,800 ft.

DD9



Pitman and others (1987) estimated that 3,300 ft of
overburden was removed from the Natural Buttes field
area in the eastern Uinta basin for a present-day elevation
of about 8,200 ft.

ESTIMATING OVERBURDEN REMOVED
USING SURFACE VITRINITE REFLECTANCE

Surface vitrinite reflectance data can be used to estimate
original depth of burial for both sedimentary basins and
uplifts, providing an alternative to the traditional method of
estimating overburden removed by stratigraphic projection
from uneroded sections. There are two ways in which vitrin-
ite reflectance can be used to estimate the thickness of over-
burden removed. First, surface vitrinite reflectance values
can be combined with subsurface information from a nearby
well to create a Rm versus depth curve, and, second, vitrinite
reflectance data can be used directly to calculate over-
burden. Using the first method, the Rm versus depth infor-
mation generally plot on a semilogarithmic scale as either a
straight line (Dow, 1977) or a series of straight-line seg-
ments having somewhat different slopes (Law and others,
1989). The plot can then be extrapolated above the present-
day ground surface to an assumed vitrinite reflectance value
near the surface of a basin under maximum burial. It is very
important to recognize changes in slope or “kinks” in the Rm
versus depth plots when extrapolating to the surface of max-
imum burial. Buried erosion surfaces (unconformities) can
cause breaks in the Rm versus depth plot (Katz and others,
1988). The discontinuous Rm versus depth profile at an
unconformity can be completely overprinted by increased
heating beyond that which occurred before exhumation.
Both variations in thermal conductivity (Nuccio and
Johnson, 1989b) and convective fluid flow (Law and others,
1989) can cause changes in slope. Law and others (1989)
suggested that convective fluid flow during development of
the Mesaverde low-permeability gas accumulation in the
Piceance basin created near-vertical segments in Rm versus
depth plots.

Extrapolations are difficult to make for uplifts, where
little drilling has occurred and tens of thousands of feet of
section have been removed, but can sometimes be made for
the flanks of the uplifts, where much of the sedimentary
section is still preserved. For our study, vitrinite reflectance
samples were collected from the east flank of the Wasatch
uplift in the western part of the study area, from the San
Rafael Swell south of the Uinta basin, and from the west
flank of the White River uplift east of the Piceance basin
(plate 1).

Differing estimates of the point of intersection of the Rm
versus depth curve and the surface under maximum burial
are an important source of error and apparently arise because
vitrinite does not form at the surface but at several hundred
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feet depth. The depth of formation varies depending on the
surface temperature and thermal regime of the area. For
example, Bustin (1986) reported a near-surface rank of 0.15
percent Rm for Arctic lignites in an area of generally average
to high thermal gradients. It is generally believed, however,
that shallow occurrences of vitrinite have initial measured
reflectance values of about 0.20-0.30 percent in coal and
kerogen (Dow, 1977; Hunt, 1979; Robert, 1988), similar to
values (as high as 0.29 percent) estimated from temperature-
Rm models (Barker and Pawlewicz, 1986a). Obviously, the
surface vitrinite reflectance value to which the Rm versus
depth curve is projected can have a strong effect on the esti-
mate of erosion. It is important, therefore, to check the sur-
face value used in an extrapolation when possible and to
realize that the difference between using surface values of
0.20 and 0.30 percent Rm can be substantial.

The second method for reconstructing the thickness of
overburden removed is to use surface vitrinite information
directly. In this method, a burial curve for surface samples is
constructed, with the thickness of overburden removed as an
unknown. A thermal gradient is assumed and the thickness
of the removed overburden is solved for by using one of the
models for vitrinite metamorphism. Assuming a thermal gra-
dient for a thickness of rock that has been removed is risky
at best. The lithology of the removed section is seldom
known. Basin subsidence is in many cases caused by a ther-
mal event, and thus present-day thermal gradients in basins
such as the Uinta and Piceance, which are no longer subsid-
ing, may differ considerably from thermal gradients during
active subsidence. Igneous events such as the emplacement
of shallow intrusions of intermediate composition in the
southern part of the Piceance basin from 34 to 29 Ma and the
extrusion of extensive basalt flows in the central Piceance
basin starting about 10 Ma were almost certainly accompa-
nied by some change in regional heat flow and thermal gra-
dients. Surface water recharge from the Uinta Mountains has
been cited as a possible cause for the unusually low present-
day thermal gradients along the northern margin of the Uinta
basin (Chapman and others, 1984). Changes with time in
plumbing systems such as the one proposed by Chapman and
others can thus produce changes in thermal gradients.

SAMPLING AND ANALYTICAL
TECHNIQUES

Several hundred samples were collected from strata in
the study area (plate 1, appendix). Dark-gray or black (color
is commonly used as a possible indicator of organic rich-
ness) mudstone, shale, fine-grained sandstone, limestone,
and coal were collected after digging 1-2 ft into an outcrop
to obtain relatively fresh, unweathered samples. Buff to
white samples were collected where dark-gray or black
rocks were not available. Coal was prepared by crushing the



sample, mounting it in epoxy on a microscope slide, planing
it off when hardened, and polishing it. In samples of other
rock types kerogen was concentrated before analysis by
crushing the sample, removing carbonate material using
HCI, and separating the kerogen from the remaining mineral
matter using aqueous solutions of zinc bromide (specific
gravity 2.0 g/cm3). The kerogen concentrate was mounted
in epoxy on a microscope slide, planed off, and polished.
For all samples, mean random vitrinite reflectance from
randomly oriented indigenous vitrinite grains was deter-
mined using plane-polarized incident white light, with a
546-nm monochromatic filter, in immersion oil on a nonro-
tating stage (Bostick, 1979; Bustin and others, 1983) on a
Zeiss Universal microscope. The number of readings per
sample varied widely depending on the quality of the sam-
ple (the amount of indigenous vitrinite in the sample). For
samples containing abundant organic matter, the number of
readings was higher; hence, the mean vitrinite reflectance
value is statistically more valid than that for samples con-
taining a paucity of vitrinite grains. As a rule of thumb, if
the number of readings for a sample is greater than 30, and
the standard deviation relatively small, then the mean vitrin-
ite reflectance value is considered valid.

RESULTS

Rocks exposed on the surface in the study area are Pre-
cambrian to Holocene in age. Although units as old as Mis-
sissippian were sampled (plate 2), this study concentrated on
Cretaceous and Tertiary units. The pre-Cretaceous geologic
history of the study area is very complex, and no attempt
was made to reconstruct burial histories for this period. It
was also difficult to find suitable rock types for vitrinite
reflectance studies in pre-Cretaceous units; hence, the
results presented here are spotty at best.

Pre-Cretaceous Rocks

Pre-Cretaceous rocks crop out on all of the uplifts that
surround the Uinta and Piceance Creek basins (plates 1, 2).
In the Utah part of the study area, pre-Cretaceous rocks are
exposed on the Uinta, Sawatch, and San Rafael uplifts and
on scattered outcrops in the eastern part of the Basin and
Range province. In the Colorado part of the study area, pre-
Cretaceous rocks are exposed mainly on the White River,
Sawatch, and Uncompahgre uplifts.

Twenty-seven samples were collected in Utah from pre-
Cretaceous units, but only three samples, from Triassic and
Jurassic units, gave satisfactory results. Two dark-gray shale
samples (86-3Y, 86-3Z) from the Middle Jurassic San
Rafael Group on the Wasatch uplift near Nephi, Utah, gave
Rm values of 0.84 and 0.65 percent, respectively. The third
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sample (86-4U), from the Lower Jurassic Glen Canyon
Group on the San Rafael Swell, gave an Rm value of 1.43
percent. Many of the barren samples are from Paleozoic
marine limestone formations. In these units conodont alter-
ation index (CAI) may be a more useful tool with which to
measure thermal maturity.

The thermal maturity of Lower Cretaceous and older
units on the White River and Sawatch uplifts in Colorado has
been measured and discussed (Nuccio and Schenk, 1986,
1987), and these units were not resampled. Pre-Cretaceous
units also were not sampled from the Uncompahgre uplift.

Dakota Sandstone, Mowry Shale, and
Frontier Formation

The Lower to Upper Cretaceous Dakota Sandstone,
Mowry Shale, and Frontier Formation crop out along the
margins of the Uinta and Piceance basins and on many of the
uplifts in the study area. Strata of these units were deposited
in marine, marginal-marine, and coastal-plain settings dur-
ing the early history of the Cretaceous epeiric seaway (plate
2). These are the oldest strata that commonly contain carbon-
aceous intervals suitable for vitrinite reflectance analysis.

Nine samples of Dakota Sandstone and one sample of
Frontier Formation were analyzed from the Utah part of the
study area and all gave satisfactory results. Most samples are
from the San Rafael and Uncompahgre uplifts south of the
Uinta basin. Thirteen samples of Dakota Sandstone and one
sample of Mowry Shale were sampled from the Colorado
part of the study area, and ten gave satisfactory results.

Three samples of Dakota Sandstone from the San Rafael
uplift area gave Rm values of from 0.50 to 0.57 percent.
Thirteen samples of Dakota Sandstone from the Uncompah-
gre uplift and adjacent areas of the Uinta and Piceance basins
gave values of from (.55 to 1.14 percent; all but two values
are between 0.50 and 0.94 percent. One sample of Frontier
Formation (86-3H) from northeast of the Uinta uplift in the
southwestemn comer of the Bridger basin gave a value of
0.35 percent. One sample of Dakota Sandstone from beneath
volcanic debris flows near Gunnison, Colorado (86-8M),
near the boundary between the Piceance basin to the north
and the San Juan Volcanic Field to the south, yielded a value
of 0.47 percent. Two samples from the Grand Hogback near
the boundary between the Piceance basin and the White
River uplift in Colorado gave satisfactory results: a sample
of the Dakota (87-67) gave a value of 0.90 percent, and a
sample of Mowry-Frontier undifferentiated (87-70) gave a
value of 0.40 percent.

Mancos Shale

The Mancos Shale is an offshore marine shale that was
deposited in the Cretaceous epeiric seaway during the Late
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Cretaceous (plate 2). It is generally several thousand feet
thick and crops out over vast areas in the study area forming
broad valleys between the topographically higher and more
resistant rocks exposed in the Uinta and Piceance basins and
on the surrounding uplifts.

Twenty samples of Mancos Shale were analyzed from
the Uinta part of the study area. Sixteen of these samples
were organic-rich shale from which kerogen was concen-
trated; four were coal samples. Nineteen of the samples were
from the flanks of the San Rafael anticline south of the Uinta
basin and gave consistent Rm values in a narrow range from
0.43 to 0.64 percent. Four of these samples were from the
Interstate 70 roadcut on the Wasatch Plateau (fig. 1). Two of
these samples (86—4P, 86-4Q) are coals that gave values of
0.51 and 0.54 percent, and two samples are organic-rich
shale from the same stratigraphic interval (8640, 86-4R)
that gave somewhat lower values of 0.43 and 0.45 percent.

Thirty-one organic-rich shale samples were collected
from the Mancos Shale in the Colorado part of the study
area, and most gave satisfactory results. Nine samples from
the south flank of the Piceance basin (86—14D to 86-14H,
86-8D to 86-8F, 86-8H) gave values of from 0.31 to 0.67
percent. Ten samples from a complete section of Mancos
Shale exposed near Marble, Colorado (87-98 to 87-108),
gave values that varied widely from 1.25 to 4.82 percent.
This section is in the Elk Mountains along the southeastern
margin of the Piceance basin, an area containing extensive
intrusive and extrusive rocks of Oligocene age, and the
Mancos was likely metamorphosed by this igneous activity.
Eight samples from the Grand Hogback, which forms the
boundary between the Piceance basin and the White River
uplift to the east (87-63, 87-64, 8766, 87-68, 8769,
87-11, 87-72, 81-76), gave values of from 0.42 to 0.68
percent.

Mesaverde Group

The Upper Cretaceous Mesaverde Group crops out
throughout the Uinta and Piceance basins and is from about
2,000-2,500 ft thick in much of the Uinta basin and the
Douglas Creek arch to more than 6,500 ft thick in the east-
ern part of the Piceance basin. The Mesaverde Group has
been subdivided into formations and members of forma-
tions in most parts of the study area; however, a complete
discussion of Mesaverde nomenclature is beyond the scope
of this paper. In general, the Mesaverde Group can sub-
divided into two major units, a lower unit consisting of sev-
eral regressive marine cycles that intertongue with the
underlying marine Mancos Shale and an upper, mostly flu-
vial unit (plate 2). Economically important coal zones are
present in many of the regressive marine cycles, and some
coal and carbonaceous shale are present throughout the flu-
vial part of the Mesaverde as well. Coal rank maps based on
vitrinite reflectance have been generated for coal zones
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associated with marine regressive cycles (Freeman, 1979;
Nuccio and Johnson, 1983, 1986), and many vitrinite
reflectance profiles through the Mesaverde are available
(Bostick and Freeman, 1984; Chancellor and Johnson,
1986, 1988; Johnson and Nuccio, 1986; Nuccio and
Johnson, 1989a). The position of several key vitrinite
reflectance levels has also been generally determined in the
Piceance basin (Johnson and others, 1987).

Twenty-three samples of Mesaverde coals were ana-
lyzed from the Uinta basin, and all but two yielded satisfac-
tory results. Many of these samples were collected from the
flanks of Laramide structures in order to study the develop-
ment of these uplifts. Eight samples of Mesaverde coal and
carbonaceous shale from along the Interstate 70 roadcut
where it cuts through the Mesaverde Group on the Wasatch
Plateau south of the town of Emery, Utah, gave Rm values
of from 0.40 to 0.57 percent, with no significant increase
through about 1,500 ft of section. Four samples collected
from where U.S. Highway 6 cuts through the Mesaverde
Group along the Wasatch Plateau, about 60 mi to the north
of the previous locality, showed a slight increase in vitrinite
reflectance from top to bottom through about 2,400 ft of
section, from 0.49 to 0.61 percent. The last value is some-
what higher than the values of 0.55 and 0.59 percent from
two samples of the underlying Mancos Shale, and vitrinite
reflectance in the Mancos Shale may be somewhat sup-
pressed. Seven Mesaverde coal samples from the Book
Cliffs along the southern margin of the Uinta basin gave
values of from 0.58 to 0.70 percent, or again somewhat
higher than the values of from 0.43 to 0.64 percent obtained
from the underlying Mancos Shale.

Sixty-one samples of Mesaverde coal and carbonaceous
shale were analyzed from the Piceance basin, and all but
five yielded satisfactory results. Fifteen Mesaverde coal
samples from the northern part of the Douglas Creek arch,
Rangely anticline, and adjacent northeastern corner of the
Uinta basin area (2 from Utah and 13 from Colorado) gave
consistently low results of from 0.36 to 0.56 percent. Seven
Mesaverde samples from the south part of the Douglas
Creek arch gave somewhat higher results of from 0.57 to
0.65 percent. The Mesaverde Group was sampled at three
locations along the Grand Hogback in Colorado: the
Piceance Creek water gap, Harvey Gap, and Fourmile
Creek (plate 1). The underlying and overlying formations
were also sampled. The Mesaverde Group has a near-
vertical orientation along the Grand Hogback, which fol-
lows the westemn flank of the White River uplift east of the
Piceance basin. Samples from the three Mesaverde profiles
through the hogback are similar to those through the Mesa-
verde on the Wasatch Plateau in that vitrinite reflectance
values are generally quite low and show surprisingly little
increase from top to bottom through several thousands of
feet of Mesaverde. Four Mesaverde samples from the
Piceance Creek water gap gave values from 0.41 to 0.50
percent with no increase through about 5,000 ft of section.



Six Mesaverde samples from Harvey Gap increase slightly
from top to bottom, from 0.59 to 0.66 percent through 4,500
ft of section, but this increase is barely distinguishable from
the scatter. Vitrinite reflectance values of from 0.42 to 0.68
percent from the underlying Mancos Shale in the vicinity of
Harvey Gap again suggest that vitrinite in at least some of
the Mancos samples analyzed is suppressed. Five Mesa-
verde coal samples from the Mesaverde section at Fourmile
Creek show an increase in Rm values from 0.33 to 0.65 per-
cent through about 3,000 ft of section. Again, two samples
of the underlying Mancos Shale (87-76, 87-77) gave some-
what lower values of 0.48 and 0.56 percent. Reflectance
values for fourteen Mesaverde samples from the southern
part of the Piceance basin vary widely from 0.46 to 4.24
percent. Oligocene magmatism in this area probably had a
widely varying affect on thermal maturity.

North Horn, Fort Union, Colton, and
Wasatch Formations

The mostly fluvial North Horn, Colton, and Wasatch For-
mations (plate 2) unconformably overlie the Mesaverde
Group throughout most of the study area and were deposited
in the Laramide Uinta and Piceance basins after the breakup
of the Cretaceous foreland basin during Laramide uplift in
latest Cretaceous and Paleocene time (plate 2). The forma-
tions are Paleocene to Eocene in age except for the lower part
of the North Horn Formation in the western part of the Uinta
basin and the Wasatch Plateau, which is Maastrichtian
(Fouch and others, 1983).

The North Horn Formation is a mixed fluvial and lacus-
trine unit of Late Cretaceous Maastrichtian to late Paleocene
age that overlies the Mesaverde Group and underlies the
Flagstaff Member of the Green River Formation in the west-
emn part of the Uinta basin and along the Wasatch Plateau
(Fouch and others, 1983). The Paleocene Fort Union Forma-
tion is a mixed fluvial, paludal, and lacustrine unit in the
northern and central parts of the Piceance basin. The Colton
Formation is a Paleocene to middle Eocene, variegated,
mostly fluvial unit that overlies the Flagstaff Member of the
Green River Formation and underlies the main body of the
Green River Formation in the western part of the Uinta
basin. The Wasatch Formation is a similar, upper Paleocene
to lower Eocene, variegated, mostly fluvial unit in the east-
ern Uinta basin and Piceance basin. In the eastern Uinta
basin it overlies the Mesaverde Group or the Flagstaff Mem-
ber of the Green River Formation and interfingers with the
overlying Green River Formation. In the southern part of the
Piceance basin it directly overlies the Upper Cretaceous
Mesaverde Group, whereas in the northern Piceance basin it
overlies the Paleocene to lower Eocene Fort Union Forma-
tion. This difference is not considered geologically impor-
tant because in the southern Piceance basin rocks similar in
lithology and age to the Fort Union Formation are included
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in the Wasatch Formation (Donnell, 1969). In the Piceance
basin the Wasatch Formation interfingers with the overlying
Green River Formation.

A single North Horn sample from the Wasatch Plateau
(U86-KF-1VR) gave an Rm value of 0.49 percent, identical
to the value obtained from a coal in the upper part of the
underlying Blackhawk Formation (Upper Cretaceous) in the
same area. A single sample in the western part of the Uinta
basin ((U86-KF-1RC) gave an value of 0.52 percent, or
slightly lower than the values of 0.59-0.70 percent for coals
in the underlying Mesaverde Group. Two coaly fragments
from the base of fluvial channel sandstones in the North
Horn Formation were collected from the Interstate 70 road-
cut through the Wasatch Plateau (86-4E, 86-4F), but neither
gave satisfactory results. One was weathered and one con-
tained almost all fusinite.

Rocks suitable for vitrinite reflectance analysis are rare in
the Colton Formation; however, two samples of dark-gray
mudstone from the Colton Formation, collected from where
U.S. Highway 6 cuts across the Wasatch Plateau (86-5R,
86-5X), gave values of 1.46 and 0.40 percent, respectively.
A wide range of reflectance populations in sample 86-5R
suggests reworking.

Thirty-one samples of Wasatch Formation from the
Piceance basin were analyzed. These samples can be divided
into three general categories: pieces of coalified wood frag-
ments from the base of fluvial channels, coaly stringers in
mudstone or siltstone, and organic-rich mudstone and silt-
stone. Because coaly stringers and organic-rich mudstone
and siltstone are rare in the Wasatch Formation, most of the
samples collected were pieces of coalified wood fragments
from the base of fluvial channels. Although most of these
coalified wood fragments gave satisfactory analysis, many
of the results are geologically unreasonable and possible
causes for this will be discussed later. Few of the mudstone
and siltstone samples gave satisfactory results.

Samples of the Wasatch collected from the southern part
of the Piceance basin gave widely varying results. Vitrinite
reflectance values for four samples from thin coal beds in the
Wasatch (86-2D, 86-2G, 86-2K, 86-7Q) varied narrowly
from 0.45 to 0.60 percent; however, values obtained from ten
samples of coalified fragments from the base of fluvial chan-
nels varied widely from 0.53 to 2.01 percent. In several
cases, samples from two closely spaced channels gave very
different results. A few thin basaltic dikes are present in the
area, but heating from these minor intrusions would have
only metamorphosed a narrow zone of rock (Dow, 1977). At
this time we feel that a most likely explanation is that many
of these coaly fragments oxidized during diagenesis. Two
samples of Wasatch shale from the southern part of the
Piceance basin (86-7N, 86-8A) gave Rm values of 0.77 and
0.71 percent. One carbonaceous shale sample from the
Wasatch in the northern part of the basin (85-64) gave a
value of 0.62 percent, or slightly higher than values from the
overlying Green River Formation in the area. One Wasatch
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shale sample from the Sand Wash basin to the north gave a
value of 1.07 percent, which seems anomalously high. Two
small intrusions have been mapped about 3 mi northeast of
the sample locality, but it is unlikely that these could have
affected the reflectance of the samples.

Green River Formation

The Green River Formation was deposited in Lake
Uinta, which covered much of the Uinta and Piceance basins
and the Wasatch Plateau during the Eocene (plate 2). Lake
Uinta formed during the Paleocene in the western Uinta
basin and along the Wasatch Plateau to the south (Fouch,
1976) but did not expand to cover most of the area of the
Uinta and Piceance basins until the Eocene. The upper
Paleocene to lower Eocene lacustrine rocks in the western
Uinta basin and Wasatch Plateau were originally called
Flagstaff Limestone but subsequently defined as a member
of the Green River Formation (Fouch, 1976). The Green
River Formation consists of offshore lacustrine maristone
and oil shale and various marginal lacustrine rock types
including sandstone, siltstone, ostracodal, oolitic and
stromatolitic limestone, carbonate-rich mudstone, and
carbonaceous shale containing thin coal beds. Limestone
deposited during the early stages of Lake Uinta is com-
monly fossiliferous.

Thirteen samples of the Green River Formation in the
Uinta basin and Wasatch Platean were analyzed. Four of
these were from the Flagstaff Member, and none gave satis-
factory results. Five samples (86-5S to 86-5W) were col-
lected in the westernmost part of the basin near Soldier
Summit (fig. 1), but none gave satisfactory results. Of the
four Green River samples collected in the remaining part of
the Uinta basin, only two (U86-KF-2VR, 86-9D) gave sat-
isfactory results. Sample U86-KF-2VR gave an Rm value
of 0.49 percent, and sample 86-9D from the south-central
part of the Uinta basin gave a value of 0.35 percent.

Thirteen samples of Green River Formation were ana-
lyzed from the Piceance basin. Seven samples (C-299,
USGS CH-2, USGS CH-3, USGS CH-3A, USGS CH-4,
USGS CH-9, and USGS CH-9A) were coalified fragments
in lacustrine marlstone collected at shallow depths from
coreholes drilled for oil-shale assessment, and all gave satis-
factory values of from 0.31 to 0.51 percent. Sample
83-144P, a wood fragment collected from a rich oil-shale
bed exposed on the surface, gave a value of 0.35 percent, or
similar to other Green River samples in the area despite evi-
dence that vitrinite is suppressed in rich oil shales in the
Piceance basin (Nuccio and Johnson, 1984b). Three samples
of thin coal beds in the lower part of the Green River Forma-
tion were analyzed. Samples 84-27G and VN-6C contained
enough vitrinite to give satisfactory results (0.32 and 0.43
percent, respectively), but sample 84-36A would not take a
polish and the reflectance value measured is probably low.
Four samples of Green River mudstone were also analyzed,
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but only one (86-7Z) contained enough vitrinite to give a
satisfactory value of 0.55 percent, or slightly lower than the
value of 0.71 percent obtained from a nearby sample from
the underlying Wasatch Formation (sample 86-8A). Three
Green River samples were also analyzed from the southern
part of the Sand Wash basin because it is inside the bound-
ary of the study area. One sample of gray silty shale from
the Tipton Shale Member of the Green River Formation
(sample 85-117M) contained enough vitrinite to give a sat-
isfactory value of 0.45 percent. Two coal samples from the
Luman Tongue of the Green River Formation (samples
85-177Q, 85-177R) yielded values of 0.53 percent.

Uinta and Duchesne River Formations

The Uinta and Duchesne River Formations are mixed flu-
vial and lacustrine units deposited during the final stages of
subsidence and infilling in the Uinta and Piceance basins
(plate 2). The Uinta Formation is late Eocene in age and
crops out throughout much of the central areas of the Uinta
and Piceance basins. It intertongues with the underlying
Green River Formation and consists mainly of sandstone and
some siltstone and mudstone deposited in a variety of lacus-
trine, marginal-lacustrine, and fluvial environments. The
sandstones contain a high percentage of volcanic grains in
the Piceance basin and eastern part of the Uinta basin. The
Duchesne River Formation is an upper Eocene to possibly
lower Oligocene, mostly fluvial unit that overlies and inter-
tongues with the Uinta Formation in the central part of the
Uinta basin. It consists predominantly of varicolored mud-
stone encasing lenticular sandstone bodies.

Sixteen samples of Uinta Formation in the Uinta basin
were collected, but only four yielded satisfactory results. The
Uinta Formation in the Uinta basin contains a highly variable
array of rocks including thick sequences of lacustrine marl
and oil shale, lacustrine volcanoclastic sandstone, and varie-
gated fluvial rocks. Outcrops of lacustrine sandstone were
examined throughout the Uinta basin for carbonized plant
debris and wood fragments but finding unweathered out-
crops was difficult. Three of the samples that gave satisfac-
tory results were wood fragments (samples 85-74, 85-97B,
85-97E). Samples 85-74 and 85-97E from the central part
of the Uinta basin yielded similar Rm values of 0.58 and 0.47
percent, respectively, and sample 85-97B, from the eastern
part of the basin, gave a value of 0.41 percent. Sample 85-77
from a 1-in.-thick coal bed in a carbonaceous shale sequence
gave a value of 0.48 percent.

Suitable rock types for a vitrinite reflectance study are
rare in the variegated shale and lenticular sandstone of the
overlying Duchesne River Formation. Six samples were col-
lected. Five samples are from varicolored mudstone, and
only one (85-73A) contained enough vitrinite to yield a sat-
isfactory Rm value of 0.45 percent. The remaining sample
(85-97J) is from a coaly carbonaceous shale about 6 in.



thick, and it also yielded a value of 0.45 percent. These two
samples were from the Altamont-Bluebell oil field area and
are the only reasonably reliable data points from near the
deep trough of the Uinta basin.

Ten samples of Uinta Formation in the Piceance basin
were collected, and eight gave satisfactory results. All were
small coalified wood fragments in volcanoclastic sandstone.
These fragments are generally less than an inch in diameter
and less than about 4 in. long. Three samples (samples
C-144, C-153, C-155) are from coreholes drilled to assess
the underlying oil-shale reserves and one sample (Bar—A-2)
was from an oil and gas test. The remaining six samples are
from surface outcrops. Only outcrops that were well
cemented with carbonate were sampled, and most of the
wood chips collected had an unweathered appearance. Rm
values for the eight good samples varied from 0.38 to 0.56
percent, or similar to values from nearby Green River For-
mation outcrops. An area of somewhat higher values of 0.47
to 0.56 percent can be discerned using both the Uinta and
Green River data. This area runs northwest from the
Piceance Creek dome to T. 1 S., R. 98 W. (plate 1), is close
to the structural trough of the basin, and was previously
defined using less data (Johnson and Nuccio, 1986).

ESTIMATING OVERBURDEN REMOVED BY
EXTRAPOLATING VITRINITE REFLECTANCE
VERSUS DEPTH PROFILES

Eleven vitrinite reflectance profiles are presented that
were created using surface or near-surface vitrinite reflec-
tance information (fig. 1): eight from the Piceance basin
(figs. 6-13) and three from the Uinta basin (figs. 14-16).
Some of these profiles have been published previously.
All of the profiles are extrapolated above the present-day
land surface to vitrinite reflectance values of 0.20 and 0.30
percent, giving a range of values for overburden removed.
An unacceptably large range in thicknesses of overburden
removed resulted from this extrapolation. In the Piceance
basin, for example, extrapolation for the Mobil
T-52-19G well from the central part of the basin (fig. 6)
indicates that 3,700 ft of overburden has been removed
using an Rm value of 0.30 percent and 7,200 ft using
0.20 percent. This would put the surface of maximum
aggradation in this area at a present-day elevation of
between 10,600 and 14,100 ft. A major problem in these
extrapolations is large data gaps in the Rm profile that

Figure 6 (facing column). Vitrinite reflectance profile using
subsurface data from Mobil T-52-19G well (sec. 19, T. 2 S.,
R. 96 W.) (fig. 1, plate 1) and estimated surface Rm value of
0.45 percent. Selected geologic contacts and extrapolations
(dashed line) to vitrinite reflectance values of 0.20 and 0.30
percent are shown.
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Figure 7. Vitrinite reflectance profile using subsurface data
from Chancellor 398-10-1 well (sec. 10, T. 3 S., R. 98 W.)
(fig. 1, plate 1) and estimated surface Rm value of 0.33 per-
cent. Selected geologic contacts and extrapolations (dashed
line) to vitrinite reflectance values of 0.20 and 0.30 percent
are shown.

make it impossible to detect changes in slope. There is an
11,000-ft gap between the subsurface data and the surface
data, and it is impossible to detect near-surface changes
in slope in the Rm profile. Changes in slope almost cer-
tainly occur in the profile for the nearby Chancellor
398-10-1 well (fig. 7). Such changes in slope are com-
mon in the Piceance basin and can be detected in profiles
that contain no major gaps in data, such as those for the
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MWX (fig. 8) and Barmrett A-2 Crystal Creek (fig. 9)
wells. Three major segments having different slopes and
possibly several less important changes in slope are
shown in these two profiles. These changes in slope do
not coincide very well with formational boundaries and
have been attributed to convective fluid flow during the
development of the thick, low-permeability Mesaverde
gas pocket at these two locations (Law and others, 1989).
Extrapolation to the 0.20-percent Rm level in the A-2
Crystal Creek well suggests that about 1,700 ft of overbur-
den has been removed for a present-day elevation of
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Figure 8. Vitrinite reflectance profile using subsurface data
from Multiwell Experiment (MWX) site (sec. 34, T. 6 S., R. 94
W.) and surface sample 86-2G (Law and others, 1989) (fig. 1,
plate 1). Selected geologic contacts and extrapolations (dashed
line) to vitrinite reflectance values of 0.20 and 0.30 percent are
shown.
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Figure 9. Vitrinite reflectance profile using subsurface data
from Barrett A-2 Crystal Creek well (sec. 23, 7.6 S., R. 97 W.)
(Law and others, 1989) (fig. 1, plate 1). Selected geologic con-
tacts and extrapolations (dashed line) to vitrinite reflectance
values of 0.20 and 0.30 percent are shown.

about 10,250 ft, close to the 10,000-ft level suggested by
Johnson and Nuccio (1986). Extrapolation to the 0.30-
percent Rm level is at a depth of about 500 ft in the well.
Extrapolation to the 0.20-percent level in the MWX well
suggests that about 6,100 ft of overburden has been
removed for a present-day elevation of about 11,500 ft.
Extrapolation to the 0.30-percent level suggests that about
3,800 ft of overburden has been removed for a present-day
elevation of about 9,200 ft.

The three profiles from the Uinta basin give a wide
range for thickness of strata removed (figs. 14-16). Again,
large data gaps in the profiles make it difficult to detect
changes in slope. Extrapolating the Mid-America 1 Unit
profile to an Rm value of 0.30 percent (fig. 14) gives a
thickness of overburden removed of about 4,000 ft for a
present-day elevation of about 9,500 ft. Extrapolation to
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0.20 percent gives a thickness of overburden removed of
about 9,000 ft for a present-day elevation of about 14,500 ft.
These values contrast markedly with extrapolations of the
profile for the combined Mountain Fuels 1 and 3 Island Unit
wells (fig. 15). In this profile a kink at approximately the
middle of the Mesaverde Group changes the extrapolation
and points out the importance of recognizing kinks in the
profiles. Extrapolation to 0.30 percent yields a depth of
about 900 ft below the surface, whereas extrapolation to
0.20 percent gives a thickness of only about 2,300 ft of
overburden removed for a present-day elevation of about
7,200 ft. For the Shell 1-11-B4 Brotherson well (fig. 16),
extrapolations resulted in unreasonable estimates of the
thickness of overburden removed of from 6,200 ft for an
Rm value of 0.30 percent to more than 11,000 ft for 0.20
percent, possibly because there is an 11,000-ft gap in the
profile.
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Figure 10. Vitrinite reflectance profile using subsurface
data from Chorney 1-14 East Rangely Govt. (sec. 14, T. 1
N., R. 100 W) oil and gas test well and USGS CH-9A
(sec. 12, T. 1 N., R. 100 W.) shallow oil-shale corehole
(fig. 1, plate 1). Selected geologic contacts and extrapola-
tions (dashed line) to Rm values of 0.20 and 0.30 percent
are shown,
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Figure 11. Vitrinite reflectance profile using subsurface
data from Tipperary 1-30 F Bear Gulch (sec. 30, T. 5 S.,
R. 100 W.) oil an:}, gas test well and Skyline Hydrocarbon
2 (sec. 13, T. 5 S., R. 100 W) shallow oil-shale corehole
(fig. 1, plate 1). Selected geologic contacts and extrapola-
tions (dashed line) to vitrinite reflectance values of 0.20
and 0.30 percent are shown.

ESTIMATING OVERBURDEN REMOVED
USING BURIAL RECONSTRUCTIONS OF
SURFACE SAMPLES

Estimates of overburden removed can also be made
directly by constructing a burial curve for a surface vitrinite
reflectance sample and using either the time-temperature
model of Lopatin (1971) or the time-independent model of
Barker and Pawlewicz (1986a) and Barker (1989). This
method previously had been applied to a surface sample near
the MWX site that has an Rm value of 0.60 percent (Nuccio
and Johnson, 1989b). The results suggested that the observed
value of 0.60 percent could not be explained assuming
present-day thermal gradients and a maximum basin surface
elevation prior to downcutting of 10,000 ft. In contrast, how-
ever, we found that the models predicted higher than
observed reflectance values for the Mesaverde coals at depth
in the MWX well. These differences may be the result of
incorrectly estimating the thermal conductivity of the over-
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burden removed since downcutting began or the result of
changes in heat flow and thermal gradients through time.
Burial curves were constructed for the vicinity of the
Mobil T-52-19G well in the central Piceance basin (fig.
17), the Douglas Creek arch area (fig. 18), and the deep
trough of the Uinta basin near the Shell 1-11-B4 Broth-
erson well (fig. 19). The Douglas Creek arch is a broad
low-amplitude structure that separates the Uinta and
Piceance basins and acted as a hingeline between the
two subsiding basins during the Laramide orogeny
(Johnson and Finn, 1986). Two burial curves were con-
structed for the Mobil T-52-19G well, one for the aver-
age surface Rm value of 0.45 percent in the vicinity of
the well and one for a coal sample from the Cameo-Fair-
field coal zone at a depth of 10,900 ft in the well. For
the reconstruction the thicknesses of Cretaceous and Ter-
tiary units were obtained from drill-hole information.
The age of the Cameo-Fairfield zone is estimated at 73.8
Ma. The time interval represented by the unconformity
at the top of the Upper Cretaceous Mesaverde Group is
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Figure 12. Vitrinite reflectance profile using subsurface data
from Tenneco 20-4 well (sec. 20, T. 7 S., R. 91 W.) and surface
sample 86-1B (fig. 1, plate 1). Selected geologic contacts and
extrapolations (dashed line) to vitrinite reflectance values of
0.20 and 0.30 percent are shown.
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Figure 13. Vitrinite reflectance profile using subsurface data
from TRW Sunlight Federal 2 well (sec. 32, T. 7 S., R. 89 W.)
(solid circles) and surface samples at Fourmile Creek along the
Grand Hogback east of the well (open circles) (fig. 1, plate 1).
Surface samples plotted at same stratigraphic positions as the
TRW well; elevations of surface samples given in parentheses.

estimated to be 4 million years (from 66 to 62 Ma), and
we assumed that no erosion occurred during this period.
We also assumed that the area was under maximum
burial from the end of the Laramide orogeny about 37
Ma to the onset of regional uplift and downcutting about
10 Ma and that the maximum basin surface during this
period is represented by the present-day 10,000-ft level.
We then solved for a geothermal gradient for the
removed overburden. Using the Lopatin model a geother-
mal gradient of 3.20°F/100 ft (57°C/km) is needed,
whereas using the Barker and Pawlewicz model a gradi-
ent of 3.13°F/100 ft (56°C/km) is needed. These gradi-
ents are considerably higher than the geothermal gradient
of about 2.00°F/100 ft (37°C/km) in the area today
(Johnson and Nuccio, 1986). In contrast, the Rm value
of 1.56 percent for a subsurface coal sample from the
Cameo-Fairfield coal zone in the T-52-19G well
requires a gradient of 1.65°F/100 ft (30°C/km) for the
Lopatin model and 2.37°F/100 ft (43°C/km) for the
Barker and Pawlewicz model, both of which are much
closer to the present-day thermal gradient.

Both models also seriously underpredicted the Rm value
of 0.63 percent of Mesaverde surface sample 83-163B from
the Douglas Creek arch (fig. 18). The burial curve again
assumes that no erosion occurred during the Cretaceous-
Tertiary hiatus, that the sample was under maximum burial
from 37 to 10 Ma, and that the present-day 10,000-ft level is
the surface of maximum burial. Using the Lopatin model a
geothermal gradient of 3.90°F/100 (71°C/km) is needed,
whereas using the Barker and Pawlewicz model a gradient of
4.32°F/100 ft (79°C/km) is required. These values compare
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with a present-day gradient of about 2.30°F/100 ft
(42°C/km) for the area (Johnson and Nuccio, 1986). If the
present-day gradient of 2.30°F/100 ft (42°C/km) gradient is
assumed instead, then 2,650 ft more overburden above the
10,000-ft level is needed for the Lopatin model and about
4,950 ft more overburden for the Barker and Pawlewicz
model. These numbers are probably not geologically reason-
able. Assuming that erosion occurred during the Cretaceous-
Tertiary hiatus does not significantly alter the solutions until
the amount of eroded Mesaverde section is about 4,000 ft, an
amount that is not geologically reasonable.

Reconstructing a burial history for surface samples in
the Uinta basin is much more uncertain because no trace
of the surface of the basin prior to the onset of downcut-
ting about 10 Ma remains. The best results from near the
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VITRINITE REFLECTANCE, IN PERCENT

Figure 14, Vitrinite reflectance profile using subsurface data
from Mid-America 1 Unit well (sec. 24, T.9S., R. 24 E.) and
surface sample 85-97B located nearby (fig. 1, plate 1). Select-
ed geologic contacts and extrapolations (dashed line) to vitrin-
ite reflectance values of 0.20 and 0.30 percent are shown.
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Figure 15. Vitrinite reflectance profile using subsurface data
from Mountain Fuels 1 Island Unit well (sec. 7, T. 10 S., R.
20 E.) (open circles), Mountain Fuels 3 Island Unit well
(sec. 8, T. 10 S., R. 20 E.) (solid circles), and surface sample
86-9D (plus symbol), about 11 mi to southwest (sec. 22, T.
11 S., R. 19 E) (fig. 1, plate 1). Selected geologic contacts
and extrapolations (dashed line) to vitrinite reflectance

VITRINITE REFLECTANCE, IN PERCENT

values of 0.20 and 0.30 percent are shown.

ELEVATION, IN METERS

Figure 16 (facing column). Vitrinite reflectance profile using
subsurface data from Shell 1-11-B4 Brotherson well (sec. 11,
T.2S., R. 4 W.) and surface sample 85-97j (sec. 24, T. 1 S, R.
5 W.) (fig. 1, plate 1). Selected geologic contacts and extrapo-
lations (dashed line) to vitrinite reflectance values 0.20 and

0.30 percent are shown.
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Figure 17. Burial curves for sample of Cameo-Fairfield coal
zone in Mobil T-52-19G well (sec. 19, T. 2 S., R. 96 W.)
(fig. 1, plate 1). Surface vitrinite reflectance of 0.45 is average
of several surface samples in vicinity of well. Reconstruction
assumes that present-day 10,000-ft level was level of maxi-
mum basin aggradation. Geothermal gradients (°F/100 ft) are
those needed to attain observed vitrinite reflectance (Rm)
values using models of Lopatin (1971) and Barker and
Pawlewicz (1986a).
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Figure 18. Burial curves for typical surface sample (83-163B)
of Mesaverde Group on Douglas Creek arch (plate 1). Recon-
struction assumes that present-day 10,000-ft level was level of
maximum basin aggradation. Geothermal gradients (°F/100 ft)
are those needed to attain observed vitrinite reflectance (Rm)
value using models of Lopatin (1971) and Barker and
Pawlewicz (1986a).
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Figure 19. Burial curve for surface sample 85-97) of
Duchesne Formation collected in area of Altamont-Bluebel! oil
field (fig. 1, plate 1). Reconstruction assumes present-day
10,000-ft level was level of maximum basin aggradation. Geo-
thermal gradients (°F/100 ft) are those needed to attain
observed vitrinite reflectance (Rm) value using models of
Lopatin (1971) and Barker and Pawlewicz (1986a).

trough of the Uinta basin were obtained from samples
85-97J and 85-73A, both of which yielded Rm values of
0.45 percent. If the present-day 10,000-ft level prior to
downcutting is used for sample 85-97J, then both models
seriously underpredict the surface vitrinite reflectance
(fig. 19). Using the Lopatin model a geothermal gradient
of 3.10°F/100 ft (57°C/km) is required, whereas using
the Barker and Pawlewicz model a geothermal gradient
of 3.31°F/100 ft (59°C/km) is required. These gradients
compare with a present-day geothermal gradient of only
about 1.10°F/100 ft (20°C/km) for the area (Willett and
Chapman, 1983; Chapman and others, 1984).

The thickness of overburden and geothermal gradients
required by the two coalification models in order to explain
the observed vitrinite reflectance values at the four sites is
shown in figure 20. In figure 21, the same curves have been
repositioned on the x- and y-coordinates so that a compari-
son can be made between the “excess overburden above the
10,000-ft level needed” and the “excess above the present-
day thermal gradient needed” at the four locations; the
closer a curve is to the zero point on the x-y axis, the smaller
the discrepancy between the predicted and measured vitrin-
ite reflectance value. Figure 21 shows that, for the four sam-
ples considered, the coalification models underpredict the
observed surface vitrinite reflectance value along the trough
of the Uinta basin by the most and underpredict the two
observed surface vitrinite reflectance values in the Piceance
basin by the least. The sample on the Douglas Creek arch is
between the two. These results are qualitatively similar to
estimates of overburden removed made by extrapolating
Rm versus depth profiles. The profiles estimate that a con-
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Figure 20. Overburden and geothermal gradients needed to explain observed vitrinite reflectance values at locations in Uinta
and Piceance basins and on Douglas Creek arch using models of Lopatin (1971) and Barker and Pawlewicz (1986a).

siderable thickness of overburden above the present-day
10,000-ft level has been removed from the trough of the
Uinta basin (fig. 16), whereas the present-day 10,000-ft
level more closely approximates the surface of maximum
aggradation near the trough of the Piceance basin (figs. 5, 6,
8).

IMPLICATIONS FOR THE STRUCTURAL
DEVELOPMENT OF LARAMIDE UPLIFTS
USING SURFACE VITRINITE REFLECTANCE
SAMPLES

Surface vitrinite reflectance samples were collected from
three uplifts in the area: the Wasatch uplift, San Rafael
Swell, and White River uplift (fig. 1). No attempt was made
to generate a burial reconstruction for the Wasatch uplift, a
complex zone of imbricated thrust sheets that formed during
the Cretaceous and Paleocene. Four vitrinite reflectance pro-
files were collected through the upturned Cretaceous and
lower Tertiary strata exposed along the Grand Hogback,
which forms the eastern margin of the White River uplift: at
the Piceance Creek water gap, Harvey Gap, Fourmile Creek,
and Marble (plate 1). Burial profiles were constructed for the
Piceance Creek water gap (fig. 22) and Harvey Gap (fig. 23).
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No attempt was made to reconstruct the burial history at
Marble because heating from nearby intrusions has obvi-
ously affected the vitrinite reflectance values. A burial
reconstruction at Fourmile Creek was not attempted because
of evidence for post-Laramide structural movement in the
area that is not well understood at this time. Basalt flows that
cap the ridge north of Fourmile Creek dip markedly to the
east, possibly due to some collapse of the White River uplift
along the hogback fault in this area or due to salt tectonics
associated with the underlying Pennsylvanian evaporites
(Grout and Abrams, 1988). A vitrinite reflectance profile at
Fourmile Creek was plotted next to the profile for the TRW
Sunlight Federal 2 well (fig. 13), drilled just west of the
hogback along Fourmile Creek. The surface samples were
plotted at the same stratigraphic position as samples in the
TRW well. For example, surface sample 87-78 is from near
the base of the Cameo-Fairfield coal zone and was plotted
adjacent to subsurface samples collected from near the base
of the coal zone. Although burial reconstructions were not
attempted, the plot does show that coal ranks for a given
stratigraphic position increase markedly from surface out-
crops to the nearby subsurface.

The Grand Hogback is underlain by a west-thrusting
reverse fault that carried the White River uplift westward
over the eastern margin of the Piceance basin during the
Laramide orogeny (Perry and Grout, 1988). Where seismic















suggested that hydrocarbon generation, mainly gas, was the
expulsion mechanism, but compaction may have also been a
factor during active basin subsidence.

Conduits for fluid movement may have been natural
fractures and permeable formations. Because it is unlikely
that such convective processes could uniformly heat the
near-surface areas of the basin, there should be significant
variations in observed vitrinite reflectance values for sur-
face samples today. One area where such variations occur is
the north-central part of the Piceance basin. An area of
unusually high surface Rm values of 0.47-0.56 percent
extends northwestward from the Piceance Creek dome
(plate 1). The Rm versus depth plot for the area has a near-
vertical segment near the present-day land surface because
the Rm value of 0.73 percent is at a depth of about 5,000 ft
in the area (fig. 6). Surface reflectance values in the sur-
rounding areas are between 0.32 and 0.43 percent. Another
possible paleo-exit point for basin fluids is the Grand
Hogback. The upturned strata on the hogback have probably
been exposed on the surface since before the end of basin
subsidence at about the end of the Eocene. Hot mineral
springs still are present along the hogback today. As previ-
ously discussed, surface reflectance values along the hog-
back are generally much higher than values predicted using
the coalification models and geological inference. Burial
reconstructions for the Uinta basin were hindered by the
lack of suitable surface samples for vitrinite reflectance
analysis, and only one reconstruction was attempted (fig.
19). Similar to the Piceance basin, coalification models
underpredict the observed reflectance values in the Uinta
basin.

In summary, there are many uncertainties related to inter-
preting surface vitrinite reflectance results. Our results do
suggest that the thermal regime of at least the Piceance basin
and the adjacent White River uplift has changed signifi-
cantly, and it is unlikely that a simple increase or decrease in
conductive heat flow can explain the results. Estimates of the
thickness of overburden removed by extrapolating Rm ver-
sus depth plots are very approximate, but much of the prob-
lem results from uncertainties in what values to extrapolate
the plots. Once this problem is resolved, much better esti-
mates of overburden removed can be made. Interpretations
for the Uinta basin are difficult because of the lack of vitrin-
ite-rich surface samples.
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